12 research outputs found

    Identification of Novel Antimalarial Chemotypes via Chemoinformatic Compound Selection Methods for a High-Throughput Screening Program against the Novel Malarial Target, PfNDH2: Increasing Hit Rate via Virtual Screening Methods

    Get PDF
    Malaria is responsible for approximately 1 million deaths annually; thus, continued efforts to discover new antimalarials are required. A HTS screen was established to identify novel inhibitors of the parasite's mitochondrial enzyme NADH:quinone oxidoreductase (PfNDH2). On the basis of only one known inhibitor of this enzyme, the challenge was to discover novel inhibitors of PfNDH2 with diverse chemical scaffolds. To this end, using a range of ligand-based chemoinformatics methods, ~17000 compounds were selected from a commercial library of ~750000 compounds. Forty-eight compounds were identified with PfNDH2 enzyme inhibition IC(50) values ranging from 100 nM to 40 μM and also displayed exciting whole cell antimalarial activity. These novel inhibitors were identified through sampling 16% of the available chemical space, while only screening 2% of the library. This study confirms the added value of using multiple ligand-based chemoinformatic approaches and has successfully identified novel distinct chemotypes primed for development as new agents against malaria

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 x 10(-20)), ER-negative BC (P = 1.1 x 10(-13)), BRCA1-associated BC (P = 7.7 x 10(-16)) and triple negative BC (P-diff = 2 x 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 x 10(-3)) and ABHD8 (PPeer reviewe

    2-Pyridylquinolone antimalarials with improved antimalarial activity and physicochemical properties

    Get PDF
    A series of 2-pyridylquinolones has been prepared in 5–7 steps and through lead optimisation, antimalarial activity as low as 12 nM against Plasmodium falciparum (Pf) has been achieved. Compared with previous analogues in this series, selected molecules have improved solubility, a reduced potential for off-target toxicity and improved metabolic stability profiles. Docking studies performed with a homology model of the Pfbc1 complex target demonstrate a key role for the Tyr16 residues in the recognition of highly active quinolone based inhibitor

    The development of quinolone esters as novel antimalarial agents targeting the Plasmodium falciparum bc1 protein complex

    No full text
    Using the Gould-Jacobs methodology a small array of 6- and 7-substituted quinolones have been prepared. Analogues in the 7-series express activity as low as 0.46 nM versus Plasmodium falciparum malaria parasites and docking studies performed in silico at the yeast Qo site demonstrate a key role for residues His182 and Glu 272 in the recognition of high potency inhibitors

    HDQ, a potent inhibitor of Plasmodium falciparum proliferation, binds to the quinone reduction site of the cytochrome bc1 complex.

    No full text
    The mitochondrial bc(1) complex is a multisubunit enzyme that catalyzes the transfer of electrons from ubiquinol to cytochrome c coupled to the vectorial translocation of protons across the inner mitochondrial membrane. The complex contains two distinct quinone-binding sites, the quinol oxidation site of the bc(1) complex (Q(o)) and the quinone reduction site (Q(i)), located on opposite sides of the membrane within cytochrome b. Inhibitors of the Q(o) site such as atovaquone, active against the bc(1) complex of Plasmodium falciparum, have been developed and formulated as antimalarial drugs. Unfortunately, single point mutations in the Q(o) site can rapidly render atovaquone ineffective. The development of drugs that could circumvent cross-resistance with atovaquone is needed. Here, we report on the mode of action of a potent inhibitor of P. falciparum proliferation, 1-hydroxy-2-dodecyl-4(1H)quinolone (HDQ). We show that the parasite bc(1) complex--from both control and atovaquone-resistant strains--is inhibited by submicromolar concentrations of HDQ, indicating that the two drugs have different targets within the complex. The binding site of HDQ was then determined by using a yeast model. Introduction of point mutations into the Q(i) site, namely, G33A, H204Y, M221Q, and K228M, markedly decreased HDQ inhibition. In contrast, known inhibitor resistance mutations at the Q(o) site did not cause HDQ resistance. This study, using HDQ as a proof-of-principle inhibitor, indicates that the Q(i) site of the bc(1) complex is a viable target for antimalarial drug development

    Abacavir Forms Novel Cross-Linking Abacavir Protein Adducts in Patients

    No full text
    Abacavir (ABC), a nucleoside-analogue reverse transcriptase inhibitor, is associated with severe hypersensitivity reactions that are thought to involve the activation of CD8+ T cells in a HLA-B*57:01-restricted manner. Recent studies have claimed that noncovalent interactions of ABC with HLA-B*57:01 are responsible for the immunological reactions associated with ABC. However, the formation of hemoglobin-ABC aldehyde (ABCA) adducts in patients exposed to ABC suggests that protein conjugation might represent a pathway for antigen formation. To further characterize protein conjugation reactions, we used mass spectrometric methods to define ABCA modifications in patients receiving ABC therapy. ABCA formed a novel intramolecular cross-linking adduct on human serum albumin (HSA) in patients and <i>in vitro</i> via Michael addition, followed by nucleophilic adduction of the aldehyde with a neighboring protein nucleophile. Adducts were detected on Lys159, Lys190, His146, and Cys34 residues in the subdomain IB of HSA. Only a cysteine adduct and a putative cross-linking adduct were detected on glutathione <i>S</i>-transferase Pi (GSTP). These findings reveal that ABC forms novel types of antigens in all patients taking the drug. It is therefore vital that the immunological consequences of such pathways of haptenation are explored in the <i>in vitro</i> models that have been used by various groups to define new mechanisms of drug hypersensitivity exemplified by ABC

    Thiazolides as novel antiviral agents. 2. Inhibition of Hepatitis C virus replication

    No full text
    We report the activities of a number of thiazolides [2-hydroxyaroyl-N-(thiazol-2-yl)amides] against hepatitis C virus (HCV) genotypes IA and IB, using replicon assays. The structure–activity relationships (SARs) of thiazolides against HCV are less predictable than against hepatitis B virus (HBV), though an electron-withdrawing group at C(5′) generally correlates with potency. Among the related salicyloylanilides, the m-fluorophenyl analogue was most promising; niclosamide and close analogues suffered from very low solubility and bioavailability. Nitazoxanide (NTZ) 1 has performed well in clinical trials against HCV. We show here that the 5′-Cl analogue 4 has closely comparable in vitro activity and a good cell safety index. By use of support vector analysis, a quantitative structure–activity relationship (QSAR) model was obtained, showing good predictive models for cell safety. We conclude by updating the mode of action of the thiazolides and explain the candidate selection that has led to compound 4 entering preclinical development
    corecore